
Introduction to Computers: Computer Systems, Computing Environments, Computer languages,

Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real

Numbers

Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable,

Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers,

Tips and Common Programming Errors Key Terms, Summary, Practice Seat.

Structure of a C Program: Expressions Precedence and Associativity, Side Effects, Evaluating

Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments Tips and

Common Errors, Key Terms, Summary, Practice Sets.

 Computer Systems:-
A computer is a system made of two major components: hardware and

software. The computer hardware is the physical equipment. The software is
the collection of programs (instructions) that allow the hardware to do its job.

 Computer Hardware: - The hardware component of the computer system
consists of five parts: input devices, central processing unit (CPU) ,primary
storage, output devices, and auxiliary storage devices.

www.Jntufastupdates.com 1

PROGRAMMING FOR PROBLEM SOLVING USING C
UNIT I

 The input device is usually a keyboard where programs and data are
entered into the computers. Examples of other input devices include a
mouse, a pen or stylus, a touch screen, or an audio input unit.

 The central processing unit (CPU) is responsible for executing
instructions such as arithmetic calculations, comparisons among
data, and movement of data inside the system.

 The output device is usually a monitor or a printer to show output. If the
output is shown on the monitor, we say we have a soft copy. If it is
printed on the printer, we say we have a hard copy.

 Auxiliary storage, also known as secondary storage, is used for both
input and output. It is the place where the programs and data are stored
permanently. When we turn off the computer, or programs and data
remain in the secondary storage, ready for the next time we need them.

 Computer Software :-
Computer software is divided in to two broad categories: system

software and application software.

 System software manages the computer resources .It provides the
interface between the hardware and the users.

 Application software, on the other hand is directly responsible for
helping users solve their problems.

 Computing Environments:-
Computing Environment is a collection of computers / machines,

software, and networks that support the processing and exchange of

electronic information meant to support various types of computing

solutions. With the advent if technology the computing environments have

been improved.

Types of Computing Environments:-

1. Personal Computing Environment

2. Time sharing Environment

3. Client Server Computing Environment

4. Distributed Computing
1. Personal Computing Environment:-

Personal means, all the computer stuff will be tied together i.e computer
is completely ours, no other Connections.
2. Time sharing Environment:-

www.Jntufastupdates.com 2

A Distributed Computing Environment Provides a seamless integration

In computing, time-sharing is the sharing of a computing resource
among many users by means of multi programming and multi-tasking at the
same time. Mam users are connected to one or more computers.
3. Client Server Computing Environment:-

A client/server system is “a networked computing model that
distributes processes between clients and servers, which supply the requested
service.” A client/server network connects many computers, called clients, to a
main computer, called a server. Whenever client requests for something,
server receives the request and process it.

4. Distributed Computing:-

of computing functions between different servers and clients. the

servers are connected by internet all over the world.

 Computer Languages:-

To write a program for a computer, we must use a computer

language. Over the years computer languages have evolved from machine

languages to natural languages.

1940’s Machine level Languages
1950’s Symbolic Languages
1960’s High-Level Languages

 Machine Languages:-
In the earliest days of computers, the only programming languages

available were machine languages. Each computer has its own machine
language, which is made of streams of 0’s and 1’s.
Instructions in machine language must be in streams of 0’s and 1’s because the
internal circuits of a computer are made of switches transistors and other
electronic devices that can be in one of two states: off or on. The off state is
represented by 0 , the on state is represented by 1.
The only language understood by computer hardware is machine language.

 Symbolic Languages:-

In early 1950’s Admiral Grace Hopper, A mathematician and naval

officer developed the concept of a special computer program that would

convert programs into machine language.

www.Jntufastupdates.com 3

Computer does not understand symbolic language it must be

translated to the machine language. A special program called assembler

translates symbolic code into machine language.

 High Level Languages:-

Symbolic languages greatly improved programming effificiency; they

still required programmers to concentrate on the hardware that they

were using.

Working with symbolic languages was also very tedious because each

machine instruction has to be individually coded. The desire to improve

programmer efficiency and to change the focus from the computer to

the problem being solved led to the development of high-level language.

 Creating and running Programs:-

 Generally, the programs created using programming languages

like C, C++, Java, etc., are written using a high-level language like

English. But, the computer cannot understand the high-level

language.

 It can understand only low-level language. So, the program

written in high-level language needs to be converted into the

low-level language to make it understandable for the computer.

This conversion is performed using either Interpreter or

Compiler.

 Popular programming languages like C, C++, Java, etc., use the

compiler to convert high-level language instructions into low-

level language instructions.

 To create and execute C programs in Windows Operating

System, we need to install Turbo C software. We use the

following steps to create and execute C programs in Windows

OS…

www.Jntufastupdates.com 4

Step 1: Creating Source Code

Source code is a file with C programming instructions in high level

language. To create source code, we use any text editor to write the

program instructions. The instructions written in the source code

must follow the C programming language rules. The following steps

are used to create source code file in Windows OS…

 Click on Start button

 Select Run

 Type cmd and press Enter

 Type cd c:\TC\bin in the command prompt and press Enter

 Type TC press Enter

 Click on File -> New in C Editor window

 Type the program

 Save it as FileName.c (Use shortcut key F2 to save)

Step 2: Compile Source Code (Alt + F9)

Compilation is the process of converting high level language

instructions into low level language instructions. We use the shortcut

key Alt + F9 to compile a C program in Turbo C.

Whenever we press Alt + F9, the source file is going to be

submitted to the Compiler. On receiving a source file, the compiler

first checks for the Errors. If there are any Errors then compiler

returns List of Errors, if there are no errors then the source code is

converted into object code and stores it as file with .obj extension.

Then the object code is given to the Linker. The Linker combines

www.Jntufastupdates.com 5

both the object code and specified header file code and generates

an Executable file with .exe extension.

Step 3: Executing / Running Executable File (Ctrl + F9)

After completing compilation successfully, an executable file is

created with .exe extension. The processor can understand

this .exe file content so that it can perform the task specified in the

source file.

We use a shortcut key Ctrl + F9 to run a C program. Whenever we

press Ctrl + F9, the .exe file is submitted to the CPU. On

receiving .exe file, CPU performs the task according to the instruction

written in the file. The result generated from the execution is placed

in a window called User Screen.

Step 4: Check Result (Alt + F5)

After running the program, the result is placed into User Screen. Just

we need to open the User Screen to check the result of the program

execution. We use the shortcut key Alt + F5 to open the User Screen

and check the result.

Execution Process of a C Program

When we execute a C program it undergoes with following process…

 The file which contains c program instructions in high level

language is said to be source code. Every c program source file is

saved with .c extension, for example Sample.c.

www.Jntufastupdates.com 6

Overall Process:-

 Type the program in C editor and save with .c

extension (Press F2 to save).

 Press Alt + F9 to compile the program.

 If there are errors, correct the errors and recompile the

program.

 If there are no errors, then press Ctrl + F9 to execute / run the

program.

 Press Alt + F5 to open User Screen and check the result.

The technique to represent and work with numbers is called number

 Whenever we press Alt + F9 the source file is submitted to the

compiler. Compiler checks for the errors, if there are any errors, it

returns list of errors, otherwise generates object code in a file with

name Sample.obj and submit it to the linker.

 Linker combines the code from specified header file into object

file and generates executable file as Sample.exe. With this

compilation process completes.

 Now, we need to Run the executable file (Sample.exe). To run a

program we press Ctrl + F9. When we press Ctrl + F9 the

executable file is submitted to the CPU.

 Then CPU performs the task according to the instructions written

in that program and place the result into UserScreen.

 Then we press Alt + F5 to open UserScreen and check the result of

the program.

 Computer Numbering System:-

system. Decimal number system is the most common number

system. Other popular number systems include binary number

system, octal number system, hexadecimal number system, etc.

www.Jntufastupdates.com 7

Decimal Number System:-

Decimal number system is a base 10 number system having 10

digits from 0 to 9. This means that any numerical quantity can be
represented using these 10 digits. Decimal number system is also
a positional value system.

Binary Number System:-

The easiest way to vary instructions through electric signals is two-
state system – on and off. On is represented as 1 and off as 0, though 0
is not actually no signal but signal at a lower voltage. The number
system having just these two digits – 0 and 1 – is called binary number
system.

Octal Number System:-

Octal number system has eight digits – 0, 1, 2, 3, 4, 5, 6 and 7. Octal
number system is also a positional value system with where each digit
has its value expressed in powers of 8, as shown here −

Decimal equivalent of any octal number is sum of product of each digit with its
positional value.

7268 = 7×82 + 2×81 + 6×80

= 448 + 16 + 6

= 47010

Hexadecimal Number System:-

Octal number system has 16 symbols – 0 to 9 and A to F where A is
equal to 10, B is equal to 11 and so on till F. Hexadecimal number
system is also a positional value system with where each digit has its
value expressed in powers of 16, as shown here −

 Storing Integers:-

Integers are commonly stored using a word of memory, which is 4 bytes

or 32 bits, so integers from 0 up to 4,294,967,295 (232 - 1) can be stored.

www.Jntufastupdates.com 8

Below are the integers 1 to 5 stored as four-byte values (each row

represents one integer).

0 : 00000001 00000000 00000000 00000000 | 1

4 : 00000010 00000000 00000000 00000000 | 2

8 : 00000011 00000000 00000000 00000000 | 3

12 : 00000100 00000000 00000000 00000000 | 4

16 : 00000101 00000000 00000000 00000000 | 5

This may look a little strange; within each byte (each block of eight bits), the

bits are written from right to left like we are used to in normal decimal notation,

but the bytes themselves are written left to right! It turns out that the computer

does not mind which order the bytes are used (as long as we tell the computer

what the order is) and most software uses this left to right order for bytes.7.3

Two problems should immediately be apparent: this does not allow for

negative values, and very large integers, 232 or greater, cannot be stored in a

word of memory.

 Real numbers:-

Real numbers (and rationals) are much harder to store digitally than

integers.

Recall that k bits can represent 2k different states. For integers, the first

state can represent 0, the second state can represent 1, the third state can

represent 2, and so on. We can only go as high as the integer 2k - 1, but at

least we know that we can account for all of the integers up to that point.

Unfortunately, we cannot do the same thing for reals. We could say that the

first state represents 0, but what does the second state represent? 0.1? 0.01?

0.00000001? Suppose we chose 0.01, so the first state represents 0, the

second state represents 0.01, the third state represents 0.02, and so on. We

can now only go as high as 0.01 x (2k - 1), and we have missed all of the

numbers between 0.01 and 0.02 (and all of the numbers between 0.02 and

0.03, and infinitely many others).

 INTRODUCTION TO ‘C’ LANGUAGE:-
 C language facilitates a very efficient approach to the development and

implementation of computer programs. The History of C started in 1972
at the Bell Laboratories, USA where Dennis M. Ritchie proposed this
language. In 1983 the American National Standards Institute (ANSI)
established committee whose goal was to produce “an unambiguous

www.Jntufastupdates.com 9

http://statmath.wu.ac.at/courses/data-analysis/itdtHTML/footnode.html#foot6180

and machine independent definition of the language C “ while still
retaining it’s spirit .

 C is the programming language most frequently associated with UNIX.
Since the 1970s, the bulk of the UNIX operating system and its
applications have been written in C. Because the C language does not
directly rely on any specific hardware architecture, UNIX was one of the
first portable operating systems. In other words, the majority of the
code that makes up UNIX does not know and does not care which
computer it is actually running on.

 C was first designed by Dennis Ritchie for use with UNIX on DEC PDP-11
computers. The language evolved from Martin Richard's BCPL, and one
of its earlier forms was the B language, which was written by Ken
Thompson for the DEC PDP-7. The first book on C was The C
Programming Language by Brian Kernighan and Dennis Ritchie,
published in 1978.

 In 1983, the American National Standards Institute (ANSI) established a
committee to standardize the definition of C. The resulting standard is
known as ANSI C, and it is the recognized standard for the language,
grammar, and a core set of libraries. The syntax is slightly different from
the original C language, which is frequently called K&R for Kernighan and
Ritchie. There is also an ISO (International Standards Organization)
standard that is very similar to the ANSI standard.

 It appears that there will be yet another ANSI C standard officially dated
1999 or in the early 2000 years; it is currently known as "C9X."

 BASIC STRUCTURE OF C LANGUAGE:-

 The program written in C language follows this basic structure. The
sequence of sections should be as they are in the basic structure. A C
program should have one or more sections but the sequence of sections
is to be followed.

1. Documentation section
2. Linking section
3. Definition section
4. Global declaration section
5. Main function section

{
Declaration section
Executable section
}

6. Sub program or function section

www.Jntufastupdates.com 10

1. DOCUMENTATION SECTION : comes first and is used to document the use of logic or
reasons in your program. It can be used to write the program's objective, developer and
logic details. The documentation is done in C language with /* and */ . Whatever is written
between these two are called comments.

2. LINKING SECTION : This section tells the compiler to link the certain occurrences of keywords
or functions in your program to the header files specified in this section.
e.g. #include <stdio.h>

3. DEFINITION SECTION : It is used to declare some constants and assign them some value.
e.g. #define MAX 25
Here #define is a compiler directive which tells the compiler whenever MAX is found in the
program replace it with 25.

4. GLOBAL DECLARATION SECTION : Here the variables which are used through out the program
(including main and other functions) are declared so as to make them global(i.e accessible to all
parts of program)
e.g. int i; (before main())

5. MAIN FUNCTION SECTION : It tells the compiler where to start the execution from
main()

{
point from execution starts

}
main function has two sections

1. declaration section : In this the variables and their data types are declared.

2. Executable section : This has the part of program which actually performs the task we need.
6. SUB PROGRAM OR FUNCTION SECTION : This has all the sub programs or the

functions which our program needs.

SIMPLE ‘C’ PROGRAM:

/* simple program in c */
#include<stdio.h>

main()
{
printf(“welcome to c programming”);

} /* End of main */

IDENTIFIERS :-
 Names of the variables and other program elements such as functions,

array, etc, are known as identifiers.
There are few rules that govern the way variable are named (identifiers).

www.Jntufastupdates.com 11

1. Identifiers can be named from the combination of A-Z, a-z, 0-9,
_(Underscore).
2. The first alphabet of the identifier should be either an alphabet or an
underscore. digit are not allowed.
3. It should not be a keyword.
Eg: name, ptr, sum
After naming a variable we need to declare it to compiler of what data type it
is .
The format of declaring a variable is

Data-type id1, id2, idn;

where data type could be float, int, char or any of the data types.
id1, id2, id3 are the names of variable we use. In case of single variable no
commas are required.
Eg float a, b, c;

int e, f, grand total;
char present_or_absent;

DATA TYPES :-
To represent different types of data in C program we need different data

types. A data type is essential to identify the storage representation and the
type of operations that can be performed on that data. C supports four
different classes of data types namely

1. Basic Data types

2. Derives data types

3. User defined data types

4. Pointer data types
BASIC DATA TYPES:

All arithmetic operations such as Addition , subtraction etc are possible on
basic data types.
E.g.: int a,b;

Char c;

DERIVED DATA TYPES:-
Derived datatypes are used in ‘C’ to store a set of data values. Arrays and

Structures are examples for derived data types.

Ex: int a[10];
Char name[20];

USER DEFINED DATATYPES:

www.Jntufastupdates.com 12

C Provides a facility called typedef for creating new data type names
defined by the user. For Example ,the declaration ,

typedef int Integer;
makes the name Integer a synonym of int.Now the type Integer can be used

in declarations ,casts,etc,like,

Integer num1,num2;
Which will be treated by the C compiler as the declaration of

num1,num2as int variables.
“typedef” ia more useful with structures and pointers.

POINTER DATA TYPES:-
Pointer data type is necessary to store the address of a variable.

 VARIABLES :-
A quantity that can vary during the execution of a program is known as a
variable. To identify a quantity we name the variable for example if we are
calculating a sum of two numbers we will name the variable that will hold
the value of sum of two numbers as 'sum'.

 CONSTANTS : -
A quantity that does not vary during the execution of a program is

known as a constant supports two types of constants namely Numeric
constants and character constants.

NUMERIC CONSTANTS:

1. Example for an integer constant is 786,-127
2. Long constant is written with a terminal ‘l’or ‘L’,for example 1234567899L

is a Long constant.

CHARACTER CONSTANTS:-
A character constant is written as one character with in single quotes

such as ‘a’. The value of a character constant is the numerical value of the
character in the machines character set.

 INPUT AND OUTPUT STATEMENTS :-
The simplest of input operator is getchar to read a single character from

the input device.

varname=getchar();
you need to declare varname.

The simplest of output operator is putchar to output a single character on
the output device.

putchar(varname)

www.Jntufastupdates.com 13

The getchar() is used only for one input and is not formatted. Formatted
input refers to an input data that has been arranged in a particular format, for
that we have scanf.

scanf("control string", arg1, arg2,...argn);

Control string specifies field format in which data is to be entered.

arg1, arg2... argn specifies address of location or variable where data

Eg scanf("%d%d",&a,&b);

%d used for integers
%f floats
%l long
%c character

for formatted output you use printf
printf("control string", arg1, arg2,...argn);

/* program to exhibit i/o */

#include<stdio.h>
main()
{
int a,b;
float c;
printf("Enter any number");
a=getchar();
printf("the char is ");
putchar(a);
printf("Exhibiting the use of scanf");
printf("Enter three numbers");
scanf("%d%d%f",&a,&b,&c);
printf("%d%d%f",a,b,c);
}

 Scope:-
A scope in any programming is a region of the program where a

defined variable can have its existence and beyond that variable it
cannot be accessed. There are three places where variables can be
declared in C programming language −

 Inside a function or a block which is called local variables.

www.Jntufastupdates.com 14

{

int mount;

auto int month;

}

 Outside of all functions which is called global variables.

 In the definition of function parameters which are
called formal parameters.

Local Variables:-

Variables that are declared inside a function or block are called local
variables. They can be used only by statements that are inside that
function or block of code. Local variables are not known to functions
outside their own.

Global Variables:-

Global variables are defined outside a function, usually on top of the
program. Global variables hold their values throughout the lifetime of
your program and they can be accessed inside any of the functions
defined for the program.

A global variable can be accessed by any function.

 Storage Classes:-

A storage class defines the scope (visibility) and life-time of variables
and/or functions within a C Program. They precede the type that they
modify. We have four different storage classes in a C program −

 auto

 register

 static

 extern

The auto Storage Class

The auto storage class is the default storage class for all local
variables.

The example above defines two variables with in the same storage
class. 'auto' can only be used within functions, i.e., local variables.

www.Jntufastupdates.com 15

{

register int miles;

}

The static storage class instructs the compiler to keep a local variable

in existence during the life-time of the program instead of creating and

destroying it each time it comes into and goes out of scope..

The keywords which are used to modify the properties of a variable are called

type qualifiers.

TYPES OF C TYPE QUALIFIERS:

There are two types of qualifiers available in C language. They are,

1. const

2. volatile

1. CONST KEYWORD:
 Constants are also like normal variables. But, only difference is, their values

can’t be modified by the program once they are defined.

 They refer to fixed values. They are also called as literals.

 They may be belonging to any of the data type.

The register Storage Class:-

The register storage class is used to define local variables that

should be stored in a register instead of RAM. This means that the

variable has a maximum size equal to the register size (usually one

word) and can't have the unary '&' operator applied to it (as it does not

have a memory location).

The register should only be used for variables that require quick
access such as counters.

The static Storage Class:-

The extern Storage Class

The extern storage class is used to give a reference of a global variable
that is visible to ALL the program files. When you use 'extern', the
variable cannot be initialized however, it points the variable name at a
storage location that has been previously defined.

Type Qualifiers:-

Syntax:

const data_type variable_name; (or) const data_type *variable_name;

www.Jntufastupdates.com 16

1. Security of the program
2. Memory consumption
3. Speed of the program (Performance Improvement)

This article will give some high-level ideas on how to improve the speed
of your program.

Few general points to keep in mind:-

Syntax:

volatile data_type variable_name; (or) volatile data_type *variable_name;

Tips and Common Programming Errors:-

When you start writing your code in C, C++ or any other programming
language, your first objective might be to write a program that works.

After you accomplished that, the following are few things you should
consider to enhance your program.

 You could optimize your code for performance using all possible
techniques, but this might generate a bigger file with bigger memory
footprint.

 You might have two different optimization goals, that might
sometimes conflict with each other. For example, to optimize the code
for performance might conflict with optimize the code for less memory
footprint and size. You might have to find a balance.

 Performance optimization is a never-ending process. Your code might
never be fully optimized. There is always more room for improvement
to make your code run faster.

 Sometime we can use certain programming tricks to make a code run
faster at the expense of not following best practices such as coding
standards, etc. Try to avoid implementing cheap tricks to make your
code run faster.

 Expressions:-

An expression is a combination of variables constants and operators written
according to the syntax of C language.

VOLATILE KEYWORD:
 When a variable is defined as volatile, the program may not change the

value of the variable explicitly.

 But, these variable values might keep on changing without any explicit

assignment by the program. These types of qualifiers are called volatile.

www.Jntufastupdates.com 17

Variable = expression;

Variable is any valid C variable name. When the statement is
encountered, the expression is evaluated first and then replaces the
previous value of the variable on the left hand side.

. All variables used in the expression must be assigned values before evaluation is
attempted.
Example of evaluation statements are

X=a*b-c
Y=b/c*a

Z=a-b/c+d;

 Precedence and Associativity:-

Operator precedence determines the grouping of terms in an expression and
decides how an expression is evaluated. Certain operators have higher precedence
than others; for example, the multiplication operator has a higher precedence than
the addition operator.

In C every expression evaluates to a value i.e., every expression
results in some value of a certain type that can be assigned to a
variable.

Evaluation of Expressions:-

Expressions are evaluated using an assignment statement of the form.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has
a higher precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those
with the lowest appear at the bottom. Within an expression, higher precedence
operators will be evaluated first.

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

www.Jntufastupdates.com 18

Side Effects of c:-

In C and more generally in computer science, a function or expression is
said to have a side effect if it modifies a state outside its scope or has

an observable interaction with its calling functions or the outside world.
By convention, returning a value has an effect on the calling function, but
this is usually not considered as a side effect.

Some side effects are:

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

 Modification of a global variable or static variable

 Modification of function arguments

 Writing data to a display or file

 Reading data

 Calling other side-effecting functions

Type Conversion Statements:-

www.Jntufastupdates.com 19

Implicit type casting

Implicit type casting means conversion of data types without losing its
original meaning. This type of typecasting is essential when you want
to change data types without changing the significance of the values

stored inside the variable.

Explicit type casting

In implicit type conversion, the data type is converted automatically.
There are some scenarios in which we may have to force type
conversion. Suppose we have a variable div that stores the division of
two operands which are declared as an int data type.

LOWER DATA TYPE HIGHER DATA TYPE EXPLICT TYPE

CONVERSION

Typecasting is converting one data type into another one. It is also
called as data conversion or type conversion. It is one of the important
concepts introduced in 'C' programming.

'C' programming provides two types of type casting operations:

1. Implicit type casting
2. Explicit type casting

SIMPLE PROGRAM:-

1.Prime Number program in C

www.Jntufastupdates.com 20

https://www.guru99.com/c-type-casting.html#1
https://www.guru99.com/c-type-casting.html#2

 Command Line Arguments:-

1. #include<stdio.h>
2. int main(){

3. int n,i,m=0,flag=0;

4. printf("Enter the number to check prime:");

5. scanf("%d",&n);
6. m=n/2;

7. for(i=2;i<=m;i++)

8. {
9. if(n%i==0)

10.{

Enter the number to check prime:56

Number is not prime

Enter the number to check prime:23

Number is prime

It is possible to pass some values from the command line to your
C programs when they are executed.

These values are called command line arguments and many times
they are important for your program especially when you want to
control your program from outside instead of hard coding those
values inside the code.

The command line arguments are handled using main() function
arguments where argc refers to the number of arguments passed,
and argv[] is a pointer array which points to each argument passed to
the program.

11.printf("Number is not prime");

12.flag=1;

13.break;
14.}
15.}

16.if(flag==0)

17.printf("Number is prime");
18.return 0;
19. }

Output:

www.Jntufastupdates.com 21

	PROGRAMMING FOR PROBLEM SOLVING USING C UNIT I
	 Computer Systems:-
	 Computer Software :-
	 Computing Environments:-
	Types of Computing Environments:-
	2. Time sharing Environment:-
	3. Client Server Computing Environment:-
	4. Distributed Computing:-

	 Computer Languages:-
	 Machine Languages:-
	 Symbolic Languages:-
	 High Level Languages:-

	 Creating and running Programs:-
	Step 3: Executing / Running Executable File (Ctrl + F9)
	Step 4: Check Result (Alt + F5)
	Execution Process of a C Program
	Decimal Number System:-
	Binary Number System:-
	Octal Number System:-
	Hexadecimal Number System:-
	 Real numbers:-
	 INTRODUCTION TO ‘C’ LANGUAGE:-
	 BASIC STRUCTURE OF C LANGUAGE:-
	SIMPLE ‘C’ PROGRAM:

	IDENTIFIERS :-
	DATA TYPES :-
	BASIC DATA TYPES:
	DERIVED DATA TYPES:-
	typedef int Integer;
	Integer num1,num2;
	POINTER DATA TYPES:-

	 VARIABLES :-
	 CONSTANTS : -
	NUMERIC CONSTANTS:
	CHARACTER CONSTANTS:-

	 INPUT AND OUTPUT STATEMENTS :-
	varname=getchar();
	putchar(varname)
	scanf("control string", arg1, arg2,...argn);
	printf("control string", arg1, arg2,...argn);

	 Scope:-
	Local Variables:-
	Global Variables:-

	 Storage Classes:-
	The register Storage Class:-
	The static Storage Class:-

	Type Qualifiers:-
	Tips and Common Programming Errors:-
	 Expressions:-
	Evaluation of Expressions:-

	Type Conversion Statements:-
	SIMPLE PROGRAM:-

